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Abstract 

 We have developed a generic prototype of a flood-forecasting model that is transferable 

to other locations around the Midwest to provide monitoring and forecasting flood potential at 

critical infrastructure points, such as bridges, where streamflow gauges are not available. Our 

efforts have centered around creating tools and protocols that would facilitate the implementation 

of the hydrological model in any of the four MATC states. The protocols include 1) a 

methodology to use existing regional data to determine the parameters in the runoff routing 

equation along the river network, 2) a methodology to determine the infiltration parameters that 

control rainfall-runoff transformation, and 3) Technology transfer between the University of 

Iowa and the University of Nebraska. In this phase, we focus our work in the validation of the 

methodologies previously developed to estimate the routing and infiltration parameters. 

 



1 

 

Chapter 1 Preliminaries: The Iowa Flood Center HLM hydrological model 

The Iowa Flood Center hydrological model, Hillslope-Link Model (HLM), is a 

distributed hillslope-scale rainfall-runoff model that partitions Iowa into over three million 

individual control volumes following the landscape decomposition outlined in Mantilla and 

Gupta (2005). The model is parsimonious, using ordinary differential equations to describe 

transport between adjacent control volumes. This characteristic reduces the computational 

resources needed by capturing the most essential features of the rainfall runoff transformation; it 

uses only a few parameters to obtain acceptable results. The model partitions the river network 

into river links (the portion of a river channel between two junctions of a river network) and the 

landscape into hillslopes (adjacent areas that drain into the links).  

 

  

(a) (b) 
Figure 1.1 (a) illustration of landscape decomposition into hillslopes and decomposition of the 
river network into channel link and (b) vertical soil profile and control volumes included in the 

hydrological model 
 

Mass conservation equations give rise to the system of coupled nonlinear ordinary 

differential equations that represent changes in the water storage in the hillslope surface (ssurf), 

top soil (stops), and deep soil (sdeeps) given by,  
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(1.1) 

(1.2) 

(1.3) 

Fluxes in, across, and out of the vertical hillslope control volumes include precipitation 

p(t), overland runoff qrunoff(t), infiltration into the topsoil qinfil, percolation from the topsoil into 

the deeper soils qpercol(t), baseflow into the channel qbaseflow(t), and evaporation from the ponded, 

topsoil, and deep soil layers (esurf(t), etops(t) and edeeps(t), respectively). The model assumes that 

percolation flux is a linear function of the amount of water stored at time t in the topsoil 

qpercol=kpercol·stops and that the baseflow is a linear function of the water stored in deep soil 

qbaseflow=kbaseflow·sdeeps. Overland runoff is a power function of the water stored on the hillslope 

surface (consistent with Manning’s equation) given by, 

 

 
(1.4) 

 

and infiltration is a nonlinear function of soil moisture content (stops/Ttops), where Ttops is the 

thickness of the topsoil layer (i.e., A-horizon) and a linear function of hydraulic head ssurf given 

by,  

 

 

(1.5) 
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where kdry corresponds to the case of dry soil and, similarly to krunoff, kpercol, and kbaseflow can be 

interpreted as time constant (residence time) of the respective storage component. The hillslope 

area (ah) for the elements in the distributed model is, on average, 0.05 km², and link length (llink) 

is, on average, 400 m. Note that ah/(2llink) is the hillslope length. The exponent φ is a nonlinearity 

introduced by the change in the potential matric of the soil column as soil moisture changes with 

time. 

The HLM should be thought of as a modeling system rather than a single specific model. 

As the equations describing hillslope-scale processes are separated from the numerical solver, it 

is rather easy to explore different mathematical descriptions for water fluxes. For example, one 

can consider such simplifications as constant runoff coefficient or water transport velocity, or as 

an alternative, one can formulate these components based on the available physical 

characteristics.  

Water transport through the river network is nonlinear and governs how channel links 

propagate flow through the river network. Formulated in the context of a mass conservation 

equation developed by Gupta and Waymire (1998), it uses the water velocity parameterization 

given by Mantilla (2007) as, 

 

  (1.6) 
 

where qlink is the discharge from the link at time t, ah is the total hillslope area draining to the 

link, q1(t) and q2(t) are the incoming flows of the upstream tributaries, A is the upstream basin 

area, and λ1, λ2, and v0 are global parameters of the water velocity component of the model and 

are set to 0.2, -0.1, and 0.3, respectively. The model can capture the main features of the 

( )
1 2
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hydrographs including the maximum stage. We used the model in several studies (e.g., Ayalew 

et al. 2014; Cunha et al. 2012). We also discuss the model performance in Krajewski et al. 

(2017). The model is driven by radar-rainfall estimated from Level II NEXRAD data from seven 

WSR-88D weather radars covering the state of Iowa. The maps of rainfall intensity have spatial 

resolution of about 0.25 km2 and are updated every five minutes. The algorithms are described in 

Krajewski et al. (2013) and Seo and Krajewski (2015). 

An important aspect of our modeling approach is the avoidance of calibration. Instead, 

we rely on detailed information of the physical properties we model. This includes the 

topography, land use and land cover, soil properties, and details of the main forcing, i.e., 

precipitation. Comparing simulation results to streamflow observations across Iowa validates the 

model formulation and parameterization. Therefore, we can view the model as data-intensive and 

calibration-free when used in forecast-mode. This, in turn, implies that with more detailed, 

relevant, and accurate data, including model states and physical domain characterization as well 

as the driving inputs, the model will work better. The model is fully automatic in the sense that 

no corrections are applied to the model as it moves forward in time once initial and boundary 

conditions are imposed.  

The model predicts the streamflow fluctuations associated with storm events over the 

catchment of interest using current observations of rainfall, and rainfall forecasts. The effect of 

storms on riverways is usually delayed ranging from days to weeks. Each point of interest in the 

landscape (bridge, culvert) can then be categorized according to the maximum warning time. The 

web interface will provide a visual tool to show when a particular location will be impacted, and 

it will provide an inundation map associated with the particular peak flow expected for that 
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location. Inundation maps are more effective tools in communicating the effects of flooding than 

crest stages at specific locations. 
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Chapter 2 Downstream data assimilation 

The latest advances include a data assimilation scheme into the model, and the 

technological transfer to the Nebraska university. The data assimilation is a simple yet powerful 

scheme that uses upstream streamflow observations to increase the performance downstream. On 

the other hand, we also worked in the technological transfer developing the streamflow rating 

curves for a set of streamflow gages in the Elkhorn watershed.        

Hydrologic distributed models are subject to large uncertainty, affecting their prediction 

skill. The uncertainty is due to errors in the modeling components. These include: (1) the errors 

from inadequate representation (model structure) of physical processes (e.g., rainfall-runoff 

transformation); (2) the errors in the meteorological inputs (e.g. rainfall, evapotranspiration, 

snowmelt); and (3) the errors in the model parameters and initial conditions that reflect the state 

of the water in the ground. These uncertainties lead to inaccurate predictions of streamflow, and 

consequently reduce our capacity to produce reliable warning of floods. 

Data assimilation can help to obtain better streamflow predictions by either altering the 

initial states of the hydrologic model (Dechant and Moradkhani 2011), changing the values of 

the model parameters (Moradkhani et al. 2005), or improving the model structure (Nearing and 

Gupta 2015). The nature of the observations assimilated in the models can range from small 

scale in-situ measurements (e.g. streamflow gages, soil moisture probes, etc.) to large scale 

remotely sensed variables. Examples of data that can be assimilated into models include 

streamflow (e.g., Mazzoleni et al. 2018), water depth (e.g., Neal et al. 2009), soil moisture (e.g., 

Brocca et al. 2014) or snow cover (e.g., Griessinger et al. 2016). In the current work we 

assimilate streamflow data, which is a cost-effective approach to improve model prediction 

accuracy (e.g., Noh et al. 2018). 
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2.1 Methodology 

We take benefit of the mathematical formulation of HLM to include streamflow 

assimilation. In our implementation, the variable 𝑞𝑞 in equation (2.1) is treated as an initial value 

of the ordinary differential equation. Streamflow data is assimilated into HLM using the direct 

insertion method (Daley 1991) described by 

 

𝑞𝑞𝑡𝑡,𝑙𝑙
+ = 𝑧𝑧𝑡𝑡𝑜𝑜      (2.1) 

where 𝑧𝑧𝑡𝑡𝑜𝑜 and 𝑞𝑞 are the observation value and the updated model state at time step 𝑆𝑆 at a 

particular channel link 𝑙𝑙 . The updated state value is indicated with the superscript+.  

 

The streamflow observed in real-time with 15-minute intervals is averaged to hourly 

values, and inserted as initial value, updating the state variable 𝑞𝑞 in equation (2.1). The averaging 

to hourly values reduces the chances of inserting null values in the model states, that might result 

in crashing the simulations. The numerical solver Asynch then resolves the differential equation 

of hydrologic (i.e., channel) routing to the downstream links. Consequently, the upstream links 

of the insertion points do not undergo any effects from the assimilation, while the assimilation 

effects should propagate downstream from the gaging point.  

We configured the HLM to simulate streamflow at every channel link of the river 

network, using observed radar rainfall and evapotranspiration as inputs. We setup the HLM 

simulation for the period from April 1 to December 1, 2016 and defined initial conditions for the 

values of all the state variables of the model in April 1 by spinning up the model for one month. 

We ran HLM with two simulation modes: (1) open loop simulation that is not associated with 

USGS observations; and (2) simulation with streamflow data assimilation. The results from the 
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open loop mode are used as reference to assess the effect of data assimilation. In the data 

assimilation mode, we define assimilation points as the gauges where streamflow observations 

are assimilated into HLM, and evaluation points as the downstream gauges where streamflow 

observations are used to assess model simulated streamflow propagated from their upstream 

assimilation points. We study the influence of the drainage area ratio between the assimilated 

and evaluated points in the performance of the simulations (Figure 2.1). We performed the 

experiment in the Cedar river Watershed. In it, we first asses the performance of the simulation 

when increasing the upstream gauges (Figure 2.1b). Then, we analyze how the performance 

changes across the main channel using just one upstream assimilation point (Figure 2.1c).  
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Figure 2.1 Schematics of the location of USGS gages in the Cedar River basin. The arrow 
indicates the direction of flow. 

 

In the first experiment we assimilate one by one the data from the gauge stations 

upstream of Cedar Falls. According to table 2.1, the contributing area, and the distance to Cedar 

Falls of the upstream stations is highly variable.   
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Table 2.1 Values of drainage area ratio for the configuration of the model described in Figure 
3b. 

Site (USGS code) Upstream Area 

(km2) 

Drainage Area 

Ratio (%) 

Distance to 

Cedar Falls (km) 

New Hartford (05463000) 349 0.07 12 

Finchford (05458900) 852 0.18 14 

Janesville (05458500) 1676 0.35 12 

Shell Rock (05462000) 1711 0.36 20 

Cedar Falls (05463050) 4714 1 0 

 

2.2 Data assimilation results 

In the first experiment the USGS gauges at Janesville, Shell Rock, Finchford and New 

Hartford are used as assimilation points, and the observations at Cedar Falls are used as 

evaluation points (see fig. 2.1b and table 2.1). The upper four panels in figure 2.2 shows the 

effect of assimilating one point at a time, and the bottom panel shows the result of using the four 

assimilation points simultaneously. The panels are sorted in order of drainage area ratio (see 

table 2.1); Hartford has the smaller ratio and Shell Rock has the larger. As the ratio of drainage 

area increases, the contribution of each gauge is more important to the increase in performance 

of the simulation, compared to the open loop simulation (no data assimilation). The results for 

Hartford and Finchford in the first two panels do not show much difference between the 

simulation with data assimilation compared to the open loop. The results from the contribution of 

Janesville and Shell Rock show improvements in the ability of the model to better reproduce the 

low flows and falling limb of the hydrographs. However, the Janesville assimilation creates an 
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over-estimation of the peak flow. Moreover, we obtain the best representation of the 

observations when we use all the upstream gauges (lower panel). 

  



11 

 

 

Figure 2.2 Results of the assimilation experiment at Cedar Falls using the configurations shown 
in figure 1.1. 

 

Our second experiment assess the role of the drainage area ratio in the performance of the 

simulations. We use another configuration of the model where we assimilate the data observed at 

Cedar Falls and use the downstream gages as evaluation points (see fig. 2.1c). The upper left 

panel of figure 2.3 shows that when performing streamflow assimilation at Cedar Falls (the most 
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upstream gage in this experiment configuration), there is an increase of the model performance at 

all the downstream gages, in terms of KGE. The increase is proportional to the drainage area 

ratio; Waterloo being the gage closer to Cedar Falls and with larger area ratio increased its KGE 

from 0.77 to 0.97; Conesville is the gage with the smaller area ratio in the configuration and 

increased the KGE value from 0.7 to 0.83. We looked at other metrics that are also relevant to 

the problem of floods. The upper right panel shows the improvement in total volume estimation 

through the percent bias. In this metric, the optimal value of percent bias is zero. The streamflow 

assimilation reduces the volume over estimation produced by the model, as shown in the 

comparison with the results of the open loop simulations. The lower left panel shows the effect 

of streamflow assimilation in reducing the error of time to annual peak. In this experiment the 

assimilation reduces the time to peak error by about 10 hours. The lower right panel shows the 

effect of streamflow assimilation in reducing the peak flow magnitude error. 



13 

 

 
Figure 2.3 Results of the experiment showing the effect of the drainage area ratio in the 

performance of the simulations. The panels show the improvement of the data assimilation 
experiments compared to the open loop simulation in terms of Kling Gupta Efficiency, Percent 

Bias, Timing of Peak Flows, and Magnitude of Peak Flows. 
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Chapter 3 Implementation of a snow parameterization in HLM 

During the winter to spring transition in 2019, southwest Iowa was primarily covered in 

snow. In March of that year, the bomb cyclone brought precipitation and increased temperatures 

to the region, detonating a significant flood. A forecast of the described event involves 

representing the snow water equivalent (SWE) processes and the runoff increase due to frozen 

soils. Additionally, for operational purposes, it may be parsimonious. With the described 

considerations, we implemented a new module for the Hillslope Link Model (HLM) called 

HLM-Snow, which uses the threshold temperature index (TI) method to accumulate and melt 

snow water equivalent (SWE). We tested the module by simulating the flood event in the 

Nishnabotna River in Iowa in March 2019. HLM-Snow outperformed other HLM modules with 

a more straightforward consideration of snow processes. The average skill of HLM-Snow to 

simulate flow in the selected event was KGE ≈ 0.74, and the skill in reproducing the SWE 

temporal variability was NSE ≈ 0.87. Our results suggest that a simple TI method can keep 

model parsimony while capturing flow and SWE.  

The implementation of the snow parameterization is the result of a collaborative work 

between the University of Iowa and the University of Nebraska.  

3.1 Introduction 

Southwestern Iowa was one of the areas more severely affected by the bomb cyclone 

event in the U.S. Midwest in March 2019. The event was a combination of frozen ground 

conditions, rain-on-snow (ROS), temperatures above the melting point, and snowmelt resulting 

in a massive flood (Flanagan et al., 2020). The described mechanism is uncommon and happens 

mainly in the early stages of spring (McCabe et al., 2007). To better understand this flooding 

mechanism, it is essential to account for the weather processes before and during this event. In 
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the winter to spring transition, temperatures usually oscillate around the freezing point with 

chances of melting the snowpack (E A Anderson, 2006; Eric A Anderson, 1973; Follum et al., 

2019) and shifting precipitation between snowfall and rainfall (Gray & Prowse, 1993). Also, the 

soil surface is typically frozen, blocking water infiltration into the soil and increasing the runoff 

ratio (Quinton et al., 2004; Suzuki et al., 2006). The mentioned factors describe a complex 

system that is challenging to represent. To simulate snow processes, modelers have used 

approaches with different levels of complexity and data requirements.  

Snow accumulation and melting model's complexity rely on how the processes are 

represented. Energy balance (EB) models simulate more processes through physically-based 

equations. Some examples of EB models are Isnobal (Marks et al. 1999), SHAW (N. Flerchinger 

& E. Saxton, 1989), UEB (Tarboton & Luce, 1996), and SNOWPACK (Lehning et al., 2002). 

EB models have proven to be skillful when there is enough data (Kumar et al., 2013; Shakoor et 

al., 2018; Skaugen et al., 2018). However, EB family models require forcing data that is usually 

scarce or uncertain (Franz et al., 2008) and may have higher equifinality (Beven, 2006). On the 

other hand, temperature index (TI) models compensate the data limitation by using empirical 

relationships with the air temperature. Some TI methods include the Cemaniege module (Valéry, 

2010), the threshold method, the linear method (Jordan, 1991), and the sigmoid method (Wang et 

al., 2019).  

Choosing an EB or TI approach will depend on the study goal, the terrain conditions 

(Zaramella et al., 2019), and the available resources (Shakoor et al., 2018). EB models give more 

insights into the mechanisms and are usually more skillful in mountainous and forested regions 

(Fierz et al., 2003). On the other hand, TI models are parsimonious and have a comparable 

performance where the terrain is less complex (Lehning et al., 2006; Lundquist & Flint, 2006). 
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Considering the advantages and limitations of each approach, we used a TI model to reproduce 

the snow accumulation and melting process that caused the devastating flood of southwestern 

Iowa in March 2019.  

This study's primary goal is to test the suitability of the TI model for simulating coupled 

processes of snow accumulation-melting and runoff generation by including those snow 

processes in the structure of a hydrologic model. For this purpose, we use the Hillslope Link 

Model (HLM) (Krajewski et al., 2017). HLM includes a module called HLM-FSnow that allows 

forcing snowmelt estimates to include the effect of this component in the runoff generation 

processes during the winter and spring months. Koya et al. (2022) proposed the formulation to 

include the TI model in HLM. In this study, we implement the Koya et al. (2022) formulation to 

develop and evaluate a new module called HLM-Snow that simulates snow-related processes 

using the TI model. We evaluate the suitability of the HLM-Snow module by simulating the 

flood event of March 2019 at the Nishnabotna River basin in southwestern Iowa. We compare 

HLM streamflow simulations to observations at five USGS gauges. We also evaluate the 

accuracy of HLM-Snow SWE spatially distributed estimates by comparing them to observed 

SWE fields in the watershed. The novelty of the study is that it explores the feasibility of using a 

parsimonious TI approach to improve the forecast skills of HLM, which has been operational for 

the last ten years (Krajewski et al., 2017; Quintero et al., 2020). Moreover, we present a 

comprehensive validation at multiple locations with observed streamflow and SWE.  

3.2 Materials and Methods 

The Nishnabotna River watershed is in southwest Iowa and has 7,300 km2 (see fig. 3.1). 

The watershed has two main branches identified as the East and West Nishnabotna Rivers. The 
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land use is dedicated to farmlands, and a significant portion of its main river channels have been 

artificially straightened. The Nishnabotna River is a tributary to the Missouri River.  

 

 

Figure 3.1 Nishnabotna watershed localization. Green dots correspond to the USGS gauges. The 
blue square corresponds to the ISU Mesonet Lewis Amstrong weather station. 

 

3.2.1 The flood event of March 2019 

In March of 2019, a deep surface cyclone detonated a series of devastating events over 

the central United States (Flanagan et al., 2020). Over eastern Nebraska and western Iowa, the 

flood event increased due to the surface conditions. Over the Nishnabotna River, SWE packs 

around 60mm melted, bringing devastating floods to Hamburg (Iowa). The SWE accumulation 

and melting in the watershed can be explained by temperature and rainfall observed oscillations 

(fig. 3.2a and b, respectively). Two successive precipitation events took place, one (March 9) 

under freezing conditions (blue area in figure 3.2) and another (March 13) under melting 

conditions (orange area in figure 3.2). The combination between accumulated SWE, rainfall and 

higher temperatures generated significant runoff, setting the conditions for high flows in the 



18 

 

watershed. We focused our work on understanding the described event using different setups of 

the parsimonious HLM model.  

 

 

Figure 3.2 a) Temperature records at the Lewis Armstrong meteorological station. b) Mean areal 
rainfall obtained using MRMS (b). The colored boxes correspond to the two rainfall events over 

the Nishnabotna watershed under freezing (blue) and melting (orange) conditions. 

 

3.3 Hillslope Link Model 

HLM represents the hydrological processes at the hillslope scale and routes the 

streamflow through the channel network. The model is highly flexible, allowing the 

representation of rainfall-runoff processes using different modules, but is consistent in that the 

hydrologic response units are the hillslopes and the water is moved across the river network. In 

this work, we represent the hillslope runoff processes using three storages: ponded surface 

(𝑆𝑆𝑝𝑝 [𝑚𝑚]); topsoil (𝑆𝑆𝑇𝑇[𝑚𝑚]); and subsurface storage (𝑆𝑆𝑠𝑠[𝑚𝑚]). Rainfall (𝑃𝑃(𝑆𝑆)[𝑚𝑚𝑚𝑚3 ⋅ 𝑞𝑞−1]) goes into 

the ponded storage of each hillslope. The water from the ponded storage can either infiltrate the 
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topsoil (𝑞𝑞𝑝𝑝𝑇𝑇[𝑚𝑚 ⋅ 𝑚𝑚𝑚𝑚𝑞𝑞−1]) or flow as runoff to the channel link (𝑞𝑞𝑝𝑝𝑝𝑝[𝑚𝑚 ⋅ 𝑚𝑚𝑚𝑚𝑞𝑞−1]). The water in 

the topsoil percolates (𝑞𝑞𝑇𝑇𝑠𝑠[𝑚𝑚 ⋅ 𝑚𝑚𝑚𝑚𝑞𝑞−1]) to the soil storage. Finally, the water in the soil storage 

seeps into the channel link as subsurface runoff (𝑞𝑞𝑠𝑠𝑝𝑝[𝑚𝑚 ⋅ 𝑚𝑚𝑚𝑚𝑞𝑞−1]). Evaporation (𝑒𝑒𝑖𝑖[𝑚𝑚 ⋅ 𝑚𝑚𝑚𝑚𝑞𝑞−1]) 

occurs from the three storages as removal of volume from the model.  A schematic of the model 

structure is presented in figure 3.3a. The differential equations describing the changes in storage 

are given by: 

 

𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑡𝑡

= 𝑃𝑃 − 𝑞𝑞𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑝𝑝𝑇𝑇 − 𝑒𝑒𝑝𝑝     (3.1) 

𝑑𝑑𝑆𝑆𝑇𝑇
𝑑𝑑𝑡𝑡

= 𝑞𝑞𝑝𝑝𝑇𝑇 − 𝑞𝑞𝑇𝑇𝑠𝑠 − 𝑒𝑒𝑇𝑇      (3.2) 

𝑑𝑑𝑆𝑆𝑠𝑠
𝑑𝑑𝑡𝑡

= 𝑞𝑞𝑇𝑇𝑠𝑠 − 𝑞𝑞𝑠𝑠𝑝𝑝 − 𝑒𝑒𝑠𝑠      (3.3) 

 

The subsurface flow 𝑞𝑞𝑠𝑠𝑝𝑝 has a linear 𝑞𝑞𝑙𝑙𝑠𝑠𝑝𝑝 and an exponential 𝑞𝑞𝑒𝑒𝑠𝑠𝑝𝑝 component. Fonley et 

al. (2020) describe the exponential formulation, validated for Iowa by Velasquez et al. (2021). 

Once in the river network, HLM transports the channel water 𝑞𝑞[𝑚𝑚3 ⋅ 𝑞𝑞−1] downstream. A 

detailed description of the streamflow routing and hillslope flows processes can be found in 

(Mantilla & Gupta, 2005; Quintero et al., 2019). 

In this study, we used three modules of HLM with incremental complexity levels: HLM-

NoSnow, HLM-FSnow, and HLM-Snow (fig. 3) described in the following subsections. The 

three modules use the formulation described before in equations (3.1), (3.2), and (3.3), and the 

channel routing scheme. They only differ in the way snow processes are represented. We use the 

incremental complexity approach to analyze the relevance of the snow process during the flood 

event and determine the strengths and limitations of HLM-Snow.  
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Figure 3.3 Representation of the hillslope processes in HLM. a) HLM-NoSnow, b) HLM-
FSnow, and c) HLM-PSnow model scheme. Blue arrows represent precipitacion 𝑃𝑃 and 𝑞𝑞𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠. 
Yellow arrows represent evapotranspiration from 𝑆𝑆𝑝𝑝, 𝑆𝑆𝑡𝑡, and 𝑆𝑆𝑠𝑠. Green arrows represent linear 

fluxes between storages. Purple arrows represent nonlinear fluxes. 

 

3.3.1 HLM-NoSnow 

HLM-NoSnow is the more straightforward configuration of the three studied modules, 

and it does not include a representation of snow processes. In this module, the 𝑃𝑃 term in equation 

(3.1) is the input from liquid precipitation. We used this configuration as a reference to contrast 

the effects caused by the inclusion of snow processes.  

3.3.2 HLM-FSnow 

This module includes inputs from liquid precipitation and snowmelt, changing equation 

(3.1) to  

𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑡𝑡

= 𝑃𝑃 + 𝑞𝑞𝑚𝑚𝑚𝑚𝑙𝑙𝑡𝑡 − 𝑞𝑞𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑝𝑝𝑇𝑇 − 𝑒𝑒𝑝𝑝    (3.4) 

where 𝑃𝑃 is liquid precipitation and qmelt is snowmelt forcing (fig. 3.3b). The term qmelt is 

obtained as the difference of sequential SWE fields. For each time interval with SWE records 

greater than zero, we estimate the snowmelt rate (𝑞𝑞𝑚𝑚𝑚𝑚𝑙𝑙𝑡𝑡[𝑚𝑚 ⋅ 𝑞𝑞−1]) as follows: 

 

qmelt = 𝑆𝑆𝑆𝑆𝐾𝐾(𝑆𝑆) − 𝑆𝑆𝑆𝑆𝐾𝐾(𝑆𝑆 − 1)    (3.5) 
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where 𝑆𝑆𝑆𝑆𝐾𝐾(𝑆𝑆) is the snow water equivalent at time interval 𝑆𝑆 estimated with the High-

Resolution Rapid Refresh (HRRR) model (Benjamin et al. 2016). In HLM-FSnow, the added 

complexity is the additional forcing. However, this module does not include a representation of 

SWE accumulation and melting processes.  

3.3.3 HLM-Snow 

Following the formulation proposed by Koya et al. (2022), we implemented HLM-Snow 

to represent snow accumulation and melting processes at the hillslopes. HLM-Snow adds a 

storage 𝑆𝑆𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠 to represent SWE accumulation and uses the temperature threshold method (TT) to 

represent SWE accumulation and melting. Compared to other TI schemes, TT is one of the most 

straightforward (Kienzle, 2008), adding just two parameters to the model and keeping its 

parsimony. In TT, precipitation is assumed to fall as liquid rainfall or SWE depending on a 

threshold temperature, 𝑇𝑇𝑏𝑏. The precipitation accumulates in the snow storage 𝑆𝑆𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠 as SWE if 

the air temperature 𝑇𝑇(𝑆𝑆) is lower than 𝑇𝑇𝑏𝑏. Moreover, snowmelt takes place at 𝑆𝑆𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠 with a rate 

𝐷𝐷 if 𝑇𝑇(𝑆𝑆) is greater than 𝑇𝑇𝑏𝑏. The given description can be expressed as follows: 

 

𝑞𝑞𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠 = �𝑃𝑃      ,      𝑇𝑇 < 𝑇𝑇𝑏𝑏
0        , 𝑇𝑇 ≥ 𝑇𝑇𝑏𝑏

,     (3.6) 

 

In equation (3.5), 𝑞𝑞𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠 represents the rainfall 𝑃𝑃 becoming SWE (𝑆𝑆𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠). In the threshold 

scheme 𝑃𝑃 becomes equals to zero when 𝑇𝑇 < 𝑇𝑇𝑏𝑏. Moreover, snowmelt, 𝑞𝑞𝑚𝑚𝑚𝑚𝑙𝑙𝑡𝑡,𝑝𝑝 subtracts water 

from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 when 𝑇𝑇 ≥ 𝑇𝑇𝑏𝑏as follows: 

 

𝑞𝑞𝑚𝑚𝑚𝑚𝑙𝑙𝑡𝑡,𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑞𝑞(𝐷𝐷 ⋅ 𝑇𝑇, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)     (3.7) 
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After 𝑞𝑞𝑚𝑚𝑚𝑚𝑙𝑙𝑡𝑡,𝑝𝑝 is computed, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is updated as follows: 

 

𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑑𝑑𝑡𝑡

= 𝑞𝑞snow − qmelt,p     (3.8) 

 

The melted water from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 updates the ponded storage (𝑆𝑆𝑝𝑝) modifying equation (3.1) as 

follows: 

 

𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑡𝑡

= 𝑃𝑃 − 𝑞𝑞𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑝𝑝𝑇𝑇 + 𝑞𝑞𝑚𝑚𝑚𝑚𝑙𝑙𝑡𝑡,𝑝𝑝 − 𝑒𝑒𝑝𝑝,    (3.9) 

 

Additionally, when  𝑇𝑇 < 𝑇𝑇𝑏𝑏 we assume zero flow from the ponded to the topsoil (𝑞𝑞𝑝𝑝𝑇𝑇 =

0), representing that the ground is frozen. Figure 3.3c shows the described processes at the 

hillslope scale. 

3.3.4 Model inputs and configuration 

The precipitation inputs are MRMS hourly rainfall estimates with a resolution of 4km 

(Zhang et al., 2016). Monthly average evapotranspiration estimates for the basin were obtained 

from MODIS (Running et al., 2017). Temperature records were obtained from the Lewis 

Armstrong station operated by Iowa Mesonet (https://mesonet.agron.iastate.edu/) (blue square in 

figure 3.1). Observed streamflow data for hydrologic validation was obtained from five USGS 

gauges located inside the watershed (green dots in figure 3.1). Observed SWE daily fields were 

obtained from the Snow and Ice Data Center to perform validation of HLM-Snow. The basin 

river network used in HLM was extracted using NHDplusV2 and a DEM with a resolution of 10 

m (USGS, 2017).  
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The three HLM modules have the same parameterization to represent runoff and routing 

processes. The runoff generation parameters follow the parameters described in Fonley et al. 

(2021) and Velasquez et al. (2021). HLM-Snow has two additional parameters: the threshold 

temperature, 𝑇𝑇𝑏𝑏 set to 5 ℃ and the melting rate, 𝐷𝐷 set to 0.2 [𝑚𝑚𝑚𝑚 ⋅℃−1 ⋅ ℎ−1]. The selected 𝑇𝑇𝑏𝑏 

value is within the range reported by several authors as described by Kienzle, (2008). The 

melting rate is in the range suggested in the National Engineering Handbook Hydrology of 1.6 to 

6 [𝑚𝑚𝑚𝑚 ⋅℃−1 ⋅ 𝑑𝑑𝑑𝑑𝑑𝑑−1] (Mockus et al., 2007).  

We performed discharge simulations of the selected basin with HLM for the period 

between March 5 and March 30 of 2019. For the three configurations, we use the same initial 

conditions setting 𝑆𝑆𝑝𝑝 = 0.0, 𝑆𝑆𝑡𝑡 = 0.05, and 𝑆𝑆𝑠𝑠 = 1.6. In the case of HLM-Snow, we assumed 

𝑆𝑆𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠 equal to the mean value of the NDSIC accumulated SWE before the event (around 60cm). 

3.4 Validation Experiment 

We conducted three experiments, each experiment using the HLM modules described 

before. In the three experiments, MRMS precipitation was used as input. In the experiment using 

HLM-FSnow, we forced snowmelt estimates from HRRR SWE retrievals (Benjamin et al., 

2016). For the experiment with HLM-Snow, we used hourly temperature records from the 

meteorological station shown in figure 3.1.  

We compared the simulated flows to observations at five USGS stations. To measure the 

performance of each module, we computed the Kling Gupta Efficiency (KGE) (Gupta et al., 

2009), Nash Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970), peak flow difference (Δ𝛥𝛥𝑝𝑝), 

and the volume bias (𝑃𝑃𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠) at each gauge using the following performance indexes: 

 

𝐾𝐾𝐾𝐾𝐾𝐾 =  �(1 − μ)2 + (1 − σ)2 + (1 − γ)2    (3.10) 
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𝑁𝑁𝑆𝑆𝐾𝐾 = 1 − ∑ �𝑄𝑄𝑠𝑠(𝑡𝑡)−𝑄𝑄𝑜𝑜(𝑡𝑡)�𝑡𝑡
∑ (𝑄𝑄𝑜𝑜(𝑡𝑡)−𝑄𝑄𝑜𝑜����)𝑡𝑡

      (3.11) 

Δ𝛥𝛥𝑝𝑝 = 100 ⋅ 𝑄𝑄𝑜𝑜𝑝𝑝−𝑄𝑄𝑠𝑠𝑝𝑝
𝑄𝑄𝑜𝑜𝑝𝑝

       (3.12) 

𝑃𝑃𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠 = 100 ⋅ ∑ �𝑄𝑄𝑜𝑜(𝑡𝑡)−𝑄𝑄𝑠𝑠(𝑡𝑡)�𝑁𝑁
𝑡𝑡=1

∑ 𝑄𝑄𝑜𝑜(𝑡𝑡)𝑁𝑁
𝑡𝑡=1

     (3.13) 

 

In equation (3.10), μ, σ, and γ correspond to the mean bias, deviation bias, and 

correlation, respectively. From equations (3.10) to (3.13), 𝛥𝛥𝑞𝑞[𝑚𝑚3 ⋅ 𝑞𝑞−1] are the observed flows 

and 𝛥𝛥𝑞𝑞[𝑚𝑚3 ⋅ 𝑞𝑞−1] the simulated. In equation (3.13), 𝛥𝛥𝑞𝑞𝑝𝑝 and 𝛥𝛥𝑞𝑞𝑝𝑝 correspond to the observed and 

simulated peak flows, respectively. 

We also validated the HLM-Snow SWE estimates by comparing the average basin values 

from NSIDC observations. In this comparison, we compute the performance indexes of KGE, 

NSE, and 𝑃𝑃𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠 using a daily timestep. We included a visual comparison of the observed and 

simulated SWE fields. 

3.5 Results 

3.5.1 Flow Simulations 

Figure 3.4 shows the simulated and observed flows at the five USGS gauges with 

significant differences among the three HLM realizations. Moreover, the lack of snow 

accumulation and snowmelt processes limits the HLM-NoSnow performance. HLM-NoSnow 

(blue line) underestimates peak flows at all the gauges compared with the observations. At the 

upstream gauges (fig. 3.4a to c), HLM-NoSnow simulates hydrographs with two peaks instead of 

one peak. Downstream, the hydrographs exhibit a large duration with oscillations 

underestimating the observations (fig. 3.4d and e). We attribute the described behavior to the 
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lack of a mechanism to store precipitation as SWE and then release it as runoff. The low 

performance of HLM-NoSnow was expected; nevertheless, we included it as a reference.  

Moreover, HLM-FSnow improves the peak flow estimations by using the HRRR Δ𝑆𝑆𝑆𝑆𝐾𝐾 as an 

additional input. Like HLM-NoSnow, HLM-FSnow also exhibits a double peak behavior at the 

upstream gauges (fig. 3.4a to c) and an early rising limb downstream (fig. 3.4d and e). 

Additionally, its hydrographs have a third peak after the observed recession. The described early 

and late peaks lead to an overestimation of the volume and a decrease in the model performance 

attributed to the HRRR input.   

Finally, HLM-Snow exhibits the highest skill in representing the hydrographs, accurately 

estimating the rising and falling limbs and the peak flows. Besides, the double peaks are 

eliminated from the simulations. Nevertheless, there are some discrepancies. Upstream, we can 

appreciate slight peak flows underestimations (fig. 3.4a and b) and overestimations downstream 

(fig. 3.4e). Moreover, there are also peak flow timing differences upstream (fig. 3.4a to c). HLM-

Snow successfully recreates the observed hydrographs using temperature records as an additional 

input.    
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Figure 3.4 HLM flow simulations (color lines) and USGS gauges flow observations (black dots) 
during the flood of March 2019. Blue lines correspond to HLM-no-snow, yellow to HLM-F-

snow, and red to HLM-Snow. 

 

HLM-NoSnow and HLM-FSnow exhibited a double peak signal that is not present in the 

observations. We attribute the simulated double peak to the presence of two rainfall events over 

the watershed (fig. 3.2). The first event happened under freezing conditions and the second 

during melting. Neither HLM-NoSnow nor HLM-FSnow can store precipitation as SWE, so both 

modules immediately release the rainfall as runoff. HLM-Snow stored the first event 

precipitation as snow due to the low temperature records. As a result, their discharge simulations 

exhibited one peak instead of two, agreeing with the observations.  
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We summarized the described behavior of the streamflow simulations by computing the 

KGE index and the peak flow difference, Δ𝛥𝛥𝑝𝑝 at each gauge (fig. 3.5). HLM-NoSnow (fig. 3.5a 

and d) has low performance, with KGE values oscillating around 0.2 and with peak flow 

underestimations around -100%. The results from this setup slightly improve near the outlet with 

Δ𝛥𝛥𝑝𝑝 values to around -20%. On the other hand, HLM-Fsnow (fig. 3.5b and e) exhibits more 

variability in both indexes. In this case, the KGE (fig. 3.5b) oscillates between -0.1 (downstream) 

and 0.6 (upstream), with values around 0.1 in the middle. Δ𝛥𝛥𝑝𝑝 (fig. 3.5e), indicating accurate 

peak flow estimations at Atlantic and Red Oak (East Nishnabotna) with values around 10%. 

However, downstream at Randolph and Hamburg, HLM-FSnow exhibits a significant Δ𝛥𝛥𝑝𝑝 

overestimation with values around 100%. Finally, in figure 3.5c and f, we present the indexes for 

HLM-Snow. Here, the KGE values (fig. 3.5c) oscillate between 0.5 and 0.9, where Randolph is 

the station with the highest score. Regarding Δ𝛥𝛥𝑝𝑝, HLM-Snow has an accurate estimation of the 

peak flow at Randolph, Red Oak, and Atlantic. However, it underestimates peak flows at 

Hancock (around 20%) and overestimates at Hamburg (around 30%).   
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Figure 3.5 KGE (first row) and 𝛥𝛥𝛥𝛥𝑝𝑝 (second row) computed for each HLM setup and each 
USGS gauge. Frames a) to c) correspond to the KGE of HLM-NoSnow, HLM-FSnow, and 

HLM-Snow, respectively. Frames d) to f) correspond to the 𝛥𝛥𝛥𝛥𝑝𝑝 of of HLM-NoSnow, HLM-
FSnow, and HLM-Snow, respectively. 

 

Table 3.1 shows the median value of the performance indexes using the five USGS 

gauges. We included two additional performance indexes in the table: NSE and the volumetric 

difference,𝑃𝑃𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠. According to the table, HLM-NoSnow has a KGE and NSE values that are 

above their respective benchmarks of -0.41 (see Knoben et al., 2019) and 0.0, respectively. 

However, both can be considered low. Besides, HLM-NoSnow has the most significant bias in 

Δ𝛥𝛥𝑝𝑝 with a value of -49%. On the other hand, HLM-FSnow has lower KGE and NSE values and 



29 

 

the most considerable 𝑃𝑃𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠 overestimation (50%). Finally, HLM-Snow exhibits the best 

performance at all the indexes. Its KGE and NSE values are 0.74 and 0.86, respectively, and its 

Δ𝛥𝛥𝑝𝑝 is 8% indicating a slight overestimation.      

 

Table 3.1 The median value of the performances obtained by HLM-no-snow, HLM-F-snow, and 
HLM-Snow. 

Performance 

Index 

HLM-

NoSnow 

HLM-

Fsnow 
HLM-Snow 

KGE 0.31 0.18 0.74 

NSE 0.36 0.14 0.86 

𝜟𝜟𝑸𝑸𝒑𝒑[%] -49 21 8 

𝑷𝑷𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃[%] -30 50 22 

 

3.5.2 SWE estimates 

We compared the basin average SWE observed and simulated with HLM-Snow daily. 

We obtained an NSE of 0.87, a KGE of 0.93, and a 𝑃𝑃𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠 of -1.25%. According to the described 

indexes and figure 3.6a, HLM-Snow reasonably estimates the SWE oscillations for the simulated 

event. Nevertheless, there are spatial distribution differences. In figures 3.6b and 3.6c, we 

present four SWE snapshots of the observed and simulated SWE. We choose the snapshots to 

compare the initial SWE storage and its initial accumulation (Dates 1 and 2), SWE values after 

the precipitation event of March 9 (see fig. 3.2b) (Date 3), and SWE during the flood event 

around March 13 (Date 4). Besides, Date 4 also coincides with the snowmelt of the SWE. In 

Date 1, the observations suggest higher SWE accumulation near the watershed outlet, while 
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simulations indicate a homogeneous distribution. In Date 2, SWE observations and simulations 

suggest higher accumulations downstream and upstream over the northwest side of the 

watershed. Date 3 indicates increased SWE accumulations over the same regions with lower 

accumulations downstream. To this date, the simulated SWE exhibits higher accumulations 

towards the North-East region of the watershed. Finally, during Date 4, the simulated SWE 

overestimates the observed one. This overestimation is more remarkable on the East side of the 

watershed.  

 

 

Figure 3.6 Mean SWE accumulation (in cm) during the March 2019 flood event. A) HLM (blue 
line) and NSIDC (dots) mean SWE over the Nishnabotna watershed. B) NSIDC SWE 

estimations for March 6, 9, 11, and 13. C) HLM-Fsnow SWE estimations for March 6, 9, 11, and 
13.  

 

The HLM-Snow SWE estimations are more spatially homogeneous than the 

observations. The homogeneity may be attributed to the threshold method to melt snow and to 
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the use of only one weather station to represent temperatures. Depending on the temperature, the 

threshold method converts all the precipitation into snow or melts it at a constant rate 𝐷𝐷. This 

behavior can be improved by using an s-shaped function (Kienzle, 2008). Other improvements 

include the hillslopes aspect (Cazorzi & Dalla Fontana, 1996; Zaramella et al. 2019) and the 

combination of the temperature index with simplified radiation balance (Cazorzi & Dalla 

Fontana, 1996; Follum et al. 2019; Kustas & Rango, 1994). We are aware that the described 

modifications may lead to better results. However, they require additional complexities and 

parameters that may be addressed in future work around HLM that may consider our results as a 

benchmark. 

3.6 Conclusions 

We tested a simple approach to simulate snow accumulation and melting processes in 

HLM using a new HLM-Snow module. We checked the ability of the new module to reproduce 

the runoff generation processes that took place in March 2019 in the Nishnabotna River, Iowa. 

We also examined the effects of using a module that does not include representation of snow 

processes and a module that uses snowmelt data as forcing. The obtained results are promising; 

however, our conclusions are limited since we only tested our model for a single watershed and 

one flood event. We validated our results by comparing simulated flows with observations at five 

USGS gauges. Also, we compared, simulated, and observed SWE in the watershed. Future work 

may expand the validation to more gauges and events covering several years of records.  

Our results suggest that using the TI model allows better runoff generation and SWE 

estimation representation. There are still limitations in the representation of the spatial SWE 

accumulations that can be attributed to the fact that we used one weather station to describe the 

temperature of the domain and the limitations of the threshold approach in the TI model. The 
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temperature-related limitation may become more relevant in larger domains. In this case, we 

assumed a spatially uniform temperature to keep the model's simplicity. Future work may 

include distributed information and expressions that correct surface temperature based on the 

elevation (Daly et al., 2000; Franz & Karsten, 2013) and the hillslope orientation (Cazorzi & 

Dalla Fontana, 1996), solar radiation, and land use. Also, using more complex TI models that 

involve S-shaped functions (Kienzle, 2008) can be explored. The results presented in this study 

provide the baseline for a regional benchmark for future developments of models including snow 

processes.  

We addressed the relevance of including snow processes in the model by comparing the 

HLM-Snow and HLM-FSnow setups. Including snowmelt as a force in HLM-FSnow corrected 

volume underestimations and improved peak flow estimations compared to not including any 

information about snow. However, HLM-FSnow exhibited flow oscillations not present in the 

observations, while HLM-Snow produced better flow simulations without artificial oscillations. 

We attribute the HLM-FSnow drawbacks to errors in the snowmelt estimates and how these are 

forced in HLM. Nevertheless, we cannot conclude that representing the processes is better than 

including snowmelt as a force since our results are limited to one basin and one flood event. We 

will expand our work in this direction since including snowmelt as a force could still be a 

plausible option. 

Using a TI model can provide accurate forecasts of snow-related floods during the early 

spring. Our results suggest that including the snow storage in the hydrologic model using the 

threshold method is a simple yet powerful tool for providing flood forecasts. Compared with 

HLM-NoSnow, HLM-Snow requires only adding one additional forcing of temperature. 
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Considering this, HLM-Snow is suitable to make forecasts at a regional level, becoming a 

complement to the current flood warning system of Iowa. 
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Chapter 4 Technology transfer – HLM in Elkhorn River 

The latest advances include the implementation of the HLM model for the Elkhorn River 

(in Nebraska) and the installation of asynch (the container of HLM) in the computers of the 

University of Nebraska. With around 18,000𝑘𝑘𝑚𝑚2, the Elkhorn River is one of the largest and 

most important watersheds in the state of Nebraska. Using HLM and Stage IV QPEs as the main 

input, we are able to reproduce some of the most important streamflow fluctuations observed by 

eight UGSG gauges between 2008 and 2020. However, our results also highlight the need for 

improvements in the model performance to obtain a better representation at some stations. On 

the other hand, we achieve a straightforward installation of HLM in a computer of the University 

of Nebraska using Docker. This report details both items, the implementation of HLM in the 

Elkhorn River and the steps to install asynch in a machine using Windows 10.  

4.1 HLM setup 

Using HLM and Stage IV QPEs, we simulated the streamflow in the Elkhorn River 

between 2008 and 2020. We setup HLM by processing a DEM with a resolution of 16m in 

TauDEM (Tarboron 1997; Tarboton and Bras 1989). From TauDEM we obtained the definition 

of the links and their respective hillslopes both saved in the ESRI shape format. Then, using the 

Python package ifis_tools (https://github.com/nicolas998/ifis_tools) and the shapefile containing 

the river network (fig. 4.1), we extracted the required files for the model. Finally, we created the 

binary rainfall files containing the Stage IV QPEs and then we ran the HLM model. The results 

were compared with the records of the eight USGS gauges shown in figure 4.1.   
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Figure 4.1 Elkhorn Watershed network description (blue lines) and UGSG gauges localization 
(green). 

 

The following section  details the steps for setup and running the HLM model for the 

Elkhorn Watershed. 

4.2 DEM processing 

To process the DEM, we use the TauDEM software which can be downloaded from the 

following link: 

https://hydrology.usu.edu/taudem/taudem5/ 

The DEM was downloaded from the USGS 3D elevation Program (3DEP). The program 

provides DEMs for the US with a resolution of ~8[m]. For the current work, we resample the 

DEM to a resolution of 16 [m]. Processing is performed in a HPC computer using a total of 224 

computational nodes. In our case the DEM process took about two hours. The total processing 

time depends on the resolution of the DEM, the number of processors, and the processor speed. 

https://hydrology.usu.edu/taudem/taudem5/
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To perform the processing, we import the TauDEM and the GDAL (GDAL/OGR contributors 

2021) packages as follows: 

module load taudem 
module load gdal/2.1.3_python-3.7.0 
 

 During the process, TauDEM follows the network delineation provided by NHD+ for the 

Elkhorn Watershed. the NHD+ network is burned into the DEM using the following script: 

gdal_calc.py --calc=A*0 --outfile=network.tif -A dem16m.tif --overwrite 
gdal_rasterize -burn 1 network.shp network.tif  
gdal_calc.py --calc=A-B*10 --outfile=dem_burn.tif  
    -A dem16m.tif -B network.tif --overwrite --type 'Int16'  

The first line of the script creates the void raster file network.tif using the dem16m.tif 

raster as a base. The second line populates the network.tif file with values equal to 1 where there 

are river segments. Finally, the third line burns the network.tif file into the dem16m.tif file. 

After the burn process, we use TauDEM to remove pits, extract flow directions, compute 

upstream areas, extract network, and delineate hillslopes. This process is done with the following 

code: 
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# Pitremove 
mpiexec -n 224 pitremove -z dem_burn.tif -fel demfel.tif 
# D8 flow directions 
mpiexec -n 224 d8flowdir -p demp.tif -sd8 demsd8.tif -fel demfel.tif 
# Contributing area 
mpiexec -n 224 aread8 -p demp.tif -ad8 demad8.tif -o outlet.shp -nc  
# Grid Network  
mpiexec -n 224 gridnet -p demp.tif -gord demgord.tif -plen demplen.tif -
tlen demtlen.tif 
# hillslope Threshold  
npixels=590  
mpiexec -n 224 threshold -ssa demad8.tif -src demsrc.tif -thresh $npixels 
#streamnet 
mpiexec -n 224 streamnet -fel demfel.tif -p demp.tif -ad8 demad8.tif  
    -src demsrc.tif -ord demord.tif -tree demtree.txt  
    -coord demcoord.txt -net demnet.shp -w demw.tif 
#Get the hillslopes from the demw.tif file  
gdal_polygonize.py demw.tif hills.shp -8 -b 1  
    -f "ESRI Shapefile" hills DN  

Executing the described code, we obtained the dement.shp and the hills.shp maps which 

are the basic information required to set up HLM. The details of the used TauDEM functions can 

be found in the following link: 

https://hydrology.usu.edu/taudem/taudem5/TauDEM53CommandLineGuide.pdf 

4.2.1 HLM setup 

HLM requires the following files to run: 

• Topology file: Describes the connection between channel links. In it, each link could have 
no parent links or a couple of parents. 

• Parameter file: Describes the upstream area, the length, and the hillslope area of each 
link. It can also contain additional hydrological parameters depending on the model 
configuration.   

• Global file: Determines how the model is going to be run. It contains the start and end 
date of the simulation. Also, it has set up options for the forces  of the model, where to 
write the results, and the formats to use. 

Additionally, HLM requires files to describe the forces and the control points. A detailed 

account of the required files can be found in the following link: 

https://hydrology.usu.edu/taudem/taudem5/TauDEM53CommandLineGuide.pdf
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https://asynch.readthedocs.io/en/latest/index.html 

We have developed the Python package ifis_tools that contains a collection of functions 

to obtain the required files using the result dement.shp. The package can be downloaded from 

the following GitHub repository: 

https://github.com/nicolas998/ifis_tools 

From ifis_tools we use the from_taudem package that contains the Python class to write 

all the required files for the HLM execution. In the following code we detail the steps: 

#Import ifis tools 
from ifis_tools import from_taudem as ft 
#Read the TauDEM network as a class of ft 
net = ft.network('maps/demnet.shp') 
#Set the parameters (for model 608 by default) 
net.get_prm() 
net.set_prm_for_model() 
#Write the topology (rvr) and param (prm) files  
net.write_prm('elk_param.prm') 
net.write_rvr('elk_topo.rvr')  

In the code, first we import the package as ft. Then we use dement.sh to define the 

parameters of the ft.network class that contains the functions used to define the files. After 

defining the network class, we setup the parameters. In this case, the parameters are set by 

default for the model 608 (non-linear subsurface model) detailed in (Fonley et al. 2021). Finally, 

we write the topology (.rvr) and the parameters (.prm) files. 

After defining the parameters and the topology files, we write the global files and the run 

files for each year. This procedure is shown in the following code: 

https://asynch.readthedocs.io/en/latest/index.html
https://github.com/nicolas998/ifis_tools
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for y in range(2008,2020): 
    global_name = 'elk_global_'+str(y)+'.gbl' 
    net.write_Global(global_name, 
        model_uid=608,  
        date1=str(y)+'-02-01 00:00', # Sim Start date 
        date2=str(y)+'-12-27 00:00', # Sim End data 
        rvrFile='elk_topo.rvr', # Topology file   
        rvrLink='', # No out link 
        prmFile='elk_param.prm', # Param file 
        initialFile='ini'+str(y)+'.uini', # initial conditions file 
        rainPath = 'rainfall/'+str(y)+'/', # Binary rainfall path 
        controlFile='control.sav', # Control points file  
        snapType = 0, # No snapshots 
        nComponents = 5, # Number of states to print 
        Components = [0,1,2,3,4] # States to print 
        datResults='qsim'+str(y)+'.dat', # where to save results 
        evpFile='evp_'+str(y)+'.mon') #Evaporation 
    #Updates the dictionary with the parameters to setup the run 
    Proc={global_name:{'nproc': 14, 'secondplane': False}} 
    #Writes the runfile with all the comands 
    net.write_runfile('run_'+str(y)+'.sh',  
        Proc, jobName='xx_'+str(y), nCores= 14)       

In it, we write a global file and a run file for each year. The net.write_Global function 

takes several arguments that populate the file. In this case, we leave comments in the function of 

each argument. After writing the global file, the code uses the net.write_runfile to write the 

executable file. 

4.2.2  Rainfall setup 

After defining the HLM files, we define the rainfall look up table for Stage IV rainfall 

using the following code: 

ft.rainfall_raster_ranks(path_in = 'stageIV_raster.tif', 
                         path_out = 'rain_ranks.tif') 
net.get_rainfall_lookup('rain_ranks.tif') 
net.rain_ranks.to_file('ranked.shp')  

In the code we first read an example raster containing StageIV QPEs and from it we 

define a ranked raster. The ranked raster is then used to define a look up table that is written in 

an ESRI shapefile.  
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Finally, we write the binary rainfall files using the following code: 

#Read the rainfall data list and extract the dates 
list_rain = glob.glob('stage4/'+str(year)+'*.tif') 
list_rain.sort() 
dates = [pd.to_datetime(get_date(date), format='%Y%m%d%H') for date in list_rain] 
dates.sort() 
df = pd.DataFrame(list_rain, dates) 
#Itereate through the dates and write the binaries 
for date in df[year].index: 
    #Get the unix time 
    unix = aux.__datetime2unix__(date)     
    #Reads and convert the rainfall 
    rain = net.rain2links(rain = None, path_rain = df.loc[date].values[0]) 
    count = rain[rain>1].size     
    #Save the binary data 
    if rain[rain > 1].size > 10: 
        ft.saveBin(rain.index.values,  
                   rain.values,count,   
                   'rainfall/'+str(year)+'/'+str(unix))   

In it, we read the list of Stage IV files and then iterate through them reading the QPEs of 

each time step. At each iteration, we assign the QPEs values to each hillslope and save the results 

in a binary file with the Unix time as the name. 

4.3 Modeling results 

Using HLM, we simulate streamflow records for the Elkhorn River between 2008 and 

2020. According to our results, the model captures the main oscillations in most of the stations. 

Moreover, it simulates some of the most significant peak flows observed in the same period. 

However, there are still shortcomings in its performance. We attribute the shortcomings to abrupt 

changes in the landscape, the dry weather. Also, the model must include snow and frozen ground 

processes to improve its performance over the watershed.  

To analyze the model’s performance, we use the 𝐾𝐾𝐾𝐾𝐾𝐾 index, the peak magnitude 

difference (Δ𝛥𝛥𝑝𝑝), and the time to peak difference (Δ𝑆𝑆𝑝𝑝). The 𝐾𝐾𝐾𝐾𝐾𝐾 index measures the overall 

performance  
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using the correlation (𝛾𝛾), the mean ratio (𝛼𝛼), and the standard deviation ratio (𝜎𝜎) as 

follows: 

 

𝐾𝐾𝐾𝐾𝐾𝐾 =  �(𝛾𝛾 − 1)2 + (1 − 𝜇𝜇)2 + (1 − 𝜎𝜎)2   (4.1) 

 

The index oscillates between −∞ and 1 where negative values are considered simulations 

with issues, and positive values are acceptable simulations. The peak magnitude difference 

compares the simulated annual peak flow (𝛥𝛥𝑝𝑝,𝑠𝑠) with the observed (𝛥𝛥𝑝𝑝,𝑜𝑜) using the following 

equation: 

 

Δ𝛥𝛥𝑝𝑝 = 𝑄𝑄𝑝𝑝,𝑠𝑠−𝑄𝑄𝑝𝑝,𝑜𝑜

𝑄𝑄𝑝𝑝,𝑜𝑜
      (4.2) 

 

In it, negative values indicate under estimation of the peak flows, and positive values 

represent over estimations. Δ𝛥𝛥𝑝𝑝 values near zero correspond to a good estimation of the peak 

flow. Finally, we measure the time to peak difference (in hours) between the arrival of the 

observed peak (𝑆𝑆𝑝𝑝,𝑜𝑜) and the simulated one (𝑆𝑆𝑝𝑝,𝑠𝑠) with the following equation:   

 

Δ𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝,𝑜𝑜 − 𝑆𝑆𝑝𝑝,𝑠𝑠     (4.3) 

 

Negative values of Δ𝑆𝑆𝑝𝑝 represent an early simulation of the peak flow, while positive 

values represent a late simulation of it. In figure 4.2 we show the result of the three indexes. 

According to figure 4.2a, the model has an acceptable 𝐾𝐾𝐾𝐾𝐾𝐾 performance in some cases. 

However, the most frequent 𝐾𝐾𝐾𝐾𝐾𝐾 value is 0.2 which means that there is room to improve the 
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model. On the other hand, the simulations have an overall good accuracy representing the peaks, 

with some cases going towards under-estimations (fig. 4.2b). Finally, there are issues 

representing the time to peak (fig. 4.2c). The Δ𝑆𝑆𝑝𝑝 frequency of values near 0 is low, and most of 

the cases correspond to positive Δ𝑆𝑆𝑝𝑝 values representing late peak flows.   

 

  

Figure 4.2 Summary of the yearly HLM performance at the USGS stations shown in figure 1.1. 
a) Kling Gupta efficiency index (𝐾𝐾𝐾𝐾𝐾𝐾). b) Peak flow difference (Δ𝛥𝛥𝑝𝑝), c) Time to peak 

difference (Δ𝑆𝑆𝑝𝑝).  

 

There are only two significant peaks in the 2002-2020 records. One in 2010 (fig. 4.3), 

and the other in 2019. The 2010 peak happened between May and Jun, the 2019 in March. The 

2010 event is well explained by the Stage IV QPEs, while the 2019 requires to consider snow 

melt and frozen ground information. In figure 4.3, we show the simulation results for the 2010 

case. According to it, HLM captures some features of the 2010 hydrograph. HLM over-estimates 

the peakflow over the main channel. Over estimations are observed upstream at gauge 06796500 

and downstream at gauge 06799350. Moreover, the model has a better peak flow estimation in 

the tributaries such as gauge 06797500 and 06799445.    
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Figure 4.3 Simulated streamflow for the 2010 event. The results correspond to two gauges over 
the main channel 06799500 and 06799350, and two tributaries:  06797500 and 06799445. 
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Chapter 5 Conclusions 

 An important aspect in providing a safe, efficient, and effective transportation system is 

anticipating natural hazards that can lead to road closures. Extreme floods can lead to bridge 

overtopping and/or compromising the structural integrity of river overpasses, including box 

culverts. The flood forecasting model and information system proposed here provides a tool to 

anticipate potential hazardous situations related to floods. It would allow time for the activation 

of action plans to minimize the impact on the overall transportation system. The forecasting 

model can be used in real time to anticipate floods and to look at past flooding scenarios to 

determine if all the actions taken were appropriate or can be improved. Our forecasting system 

will contribute to improving safety and minimizing risk associated with increasing multi-modal 

freight movements on the U.S. surface transportation system by enhancing safety and providing 

warning of potential road closures. 

 As part of this project, we have provided a prototype forecasting web platform with four 

specific innovations: 1) Forecasts at critical river/road intersections, 2) Spatial animated maps of 

flood evolution into the future, and 3) a measure of forecast accuracy at the newly incorporated 

forecast bridges. Our developments give us confidence that we can continue moving forward in 

developing a forecasting system that is transferable to other locations in the Midwest. As floods 

continue to be the most costly disaster in the nation, it becomes critical that tools are develop to 

better predict them. 
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